Using modules with MPICH-G2 (and "loose ends")

Using modules with MPICH-G2 (and "loose ends")

Johnny Chang

johnny@nas.nasa.gov

July 9, 2001
NASA Ames Research Center, M/S 258-6
Moffett Field, CA 94035, USA

NAS Technical Report NAS-01-013
Last Modified: November 19, 2001

Table of Contents

. Abstract

. Prerequisites

. Background

. Introduction

. Rich Environment

. Experiments with module.csh
. (jobtype=single)

. EXAMPLES

. Summary

. Appendices

Abstract

A new approach to running complex, distributed MPI jobs using the MPICH-G2 library is described. This approach allows the
user to switch between different versions of compilers, system libraries, MPI libraries, etc. viathe "module” command. The
key ideais adeparture from the prescribed " (jobtype=mpi)" approach to running distributed MPI jobs. The new method
reguires the user to provide a script that will be run as the "executable”" with the " (jobtype=single)" RSL attribute. The major
advantage of the proposed method is to enable users to decide in their own script what modules, environment, etc. they would
like to have in running their job.

Prerequisites

This document is intended for application devel opers and users who want to run complex, distributed MPI jobs across two or
more machines. It assumes the reader is familiar with Unix and the basics of Globus as expressed in the Globus Quick Start
Guide.

http://www.nas.nasa.gov/~johnny/modules.html (1 of 29) [2/4/2002 4:35:37 PM]

mailto:johnny@nas.nasa.gov
http://www.hpclab.niu.edu/mpi/
http://www-unix.mcs.anl.gov/mpi/
http://www.ugu.com/sui/ugu/show?help.beginners
http://www.globus.org/
http://www.globus.org/toolkit/documentation/
http://www.globus.org/toolkit/documentation/

Using modules with MPICH-G2 (and "loose ends")

Background

In mid-April 2001, Nick Karonis (karonis@olympus.cs.niu.edu) discovered that a bug in SGI's implementation of mpi causes
some codes to hang. This particular bug was fixed in newer releases of the mpt module (mpt.1.4.0.2 and higher). The question
then arose as to how one would go about using modules with Globus/MPICH-G2 (http://www.hpclab.niu.edu/mpi/). One

solution, implemented by Judith Utley (utley@marcy.nas.nasa.gov), isto hard-wire the newer mpt module into all MPICH-G2
jobs. Better solutions that do not rely on a particular hard-wiring of modules are being contemplated.

Thisisan important problem because the ability for a user to switch between modulesis crucial for awide variety of reasons.
For example, some codes run on older modules but not on newer ones or vice versa. As modules on a system are updated,
users may need to switch between modules to assess the impact, if any, of the change. Users may need to switch between
modules to determine why a code that used to run ayear ago, now behaves differently. These are just afew of the many
reasons why various versions of modules are available on the system at any given time. This paper describes a solution that
any PG user could use right away that would not rely on any future "fix" to the Globus middleware or tools or services
derived thereof.

This step-by-step description isincremental in nature and touches upon a number of techniques that 1've found useful while
learning to use the IPG. They form the "loose ends” that I've chosen to include in this document. Readers can skip to the
solution for using modules with MPICH-G2 by clicking here.

Introduction

When a user logs into amachine at NAS (NASA Advanced Supercomputing division), arich environment (paths, aliases,
environment variables, etc.) is aready pre-defined to provide easy accessibility to Unix commands. This facility is replicated
in jobs submitted to PBS. That is, batch jobs enjoy much of the same computing environment (and much more) as interactive
jobs (run at the command prompt). Jobs submitted to Globus, on the other hand, have almost a non-existent environment. Even
asimple'ls command to list files requires some knowledge of where (which directory) the command resides or some "trick" to
provide an instantaneous environment to process the command. This was a design issue and some email discussion along this
issueis attached in Appendix B.2 . Globus provides no mechanism for using modules currently. Users who want to use
modules will have to do so in their own scripts.

Rich Environment

The rich environment that users have become accustomed to is completely due to four files that are executed (source'd) when a
user logsin, or when aPBS batch job is run, and they are (for the C shell user):

/etc/cshre

$HOME/.cshrc
{usr/local/lib/init/cshrc.global
$HOME/.login

The cshre.global fileis source'd from the user's SHOME/.cshrc file unless they have explicitly commented this out. Similar
files exist for users of other shells.

The "module” command, which allows users to load/switch modules is (for me)

evel yn: / u/j ohnny> whi ch nodul e
nodul e: aliased to /usr/bsd/logger -i -p local4.notice "nmodule !'*" ;

http://www.nas.nasa.gov/~johnny/modules.html (2 of 29) [2/4/2002 4:35:37 PM]

http://www.hpclab.niu.edu/mpi/

Using modules with MPICH-G2 (and "loose ends")

eval "/ opt/nodul es/ nodul es/ bi n/ nodul ecnd tcsh !'*°

and this alias is defined in /opt/modules/modul es/init/csh (or /opt/modul es/modul es/init/tcsh) which is source'd from both
letc/cshre *and* /usr/local/lib/init/cshre.global (again, similar files exist for users of other shells).

Thisisthefirst piece of the puzzle. Namely, if the 'module’ command is not enabled, the user will need to explicitly have the
line

source /opt/ nmodul es/ nodul es/init/csh

in their script before using modules. It doesn't hurt to have this line in the script even if the module command is aready
enabled. This method of enabling the module command is universal across all the SGI Origins and Cray computersin the
NASA IPG.

To see the current setup with regards to modules for Globus jobs, consider the following script called ‘'module.csh’:

#!' / bin/csh

set verbose

sl eep 100 I sleep for 100 seconds
nodul e |i st

whi ch npirun

Thefirst line starts up a C shell and sources the SHOME/.cshrc file. The second line (set verbose) causes all subsequent
commands that are run to be echo'd to stderr. The third line (sleep 100) is onethat | use alot when | want to see what PBS
script was created by the Globus-to-PBS interface. More on this later. The fourth line lists what modules, if any, are loaded for
thisjob (and it will also serve as atest for whether the 'module’ command works or not).

Experiments with module.csh

First, a Globus job submitted to evelyn.nas.nasa.gov's jobmanager-fork:

evel yn:/u/johnny> gl obusrun -s -r evelyn ' & execut abl e=/ u/johnny/ nodul e. csh)’

sl eep 100 I sleep for 100 seconds

npirun not in /usr/nas/bin /usr/bin /usr/sbin /usr/bin/X11 /usr/l|ocal/pkg/pgi/sgi/bin
[usr/local/pkg/pgi/bin /usr/prg/bin /usr/bsd /usr/local/pbs/bin /usr/local/pbs/sbin
/usr/local/bin /fusr/java/bin /usr/etc /usr/prg/pkg/globus/1.1.3/tools/mps-sgi-

i ri x6.5/bin

letc .

nodul e |i st

No Mbdul efiles Currently Loaded.

setenv _MODULESBEQ NENV_ /u/j ohnny/. nodul esbegi nenv ;

whi ch npirun

Result: No modules loaded and the mpirun command is not found in my path. Interestingly, the ‘module’ command is enabled
even though no modules are loaded. Thisis because /etc/cshrc was not run and so no modules are loaded, but

http://www.nas.nasa.gov/~johnny/modules.html (3 of 29) [2/4/2002 4:35:37 PM]

http://www.ipg.nasa.gov/

Using modules with MPICH-G2 (and "loose ends")

/opt/modules/modul es/init/csh was source'd from /usr/local/lib/init/cshrc.global. (Note: stdout and stderr output are mixed
when returned to the screen.)

Second, a Globus job to hopper.nas.nasa.gov's jobmanager-pbs:

evel yn:/u/johnny> gl obusrun -s -r hopper ' &(executabl e=/I|c/johnny/nodul e.csh)’
sl eep 100 I sleep for 100 seconds
nodul e |i st
Currently Loaded Modul efil es:
1) nodul es 2) M PSpro 3) npt 4) scs

whi ch npirun

<*motd sni pped*>

[1] 1091589 I executable run in background, see PBS script bel ow.
[opt/ npt/ mpt/ usr/ bi n/ nmpi run

[1] Done /'l ¢/ johnny/ nodul e. csh < /dev/ nul

| ogout

<*PBS Job resource sunmary sni pped*>

Result: The default modules are loaded (PBS jobs automatically execute /etc/cshrc at start-up) and the mpirun from the
default mpt module is accessed from the script.

I've often found it useful to look at the PBS script that is generated by the Globus-to-PBS interface
/globus/deploy/libexec/globus-script-pbs-submit. One can view the PBS script when the PBSjob id is known. Thisisthe
reason | insert sleep commands in my script -- to give me enough time to execute the following two commands:

turing:/cluster/hopper/PBS/ nom priv/jobs> gstat -au johnny
ferm . nas. nasa.gov: NAS Oigin 2000 Cl uster Frontend
Tue Jul 10 17:26:55 2001

Server reports 1 job total (R1 QO HO WO T:0 E:0)
hopper: 1/30 nodes used, 58 CPU 14210nb free, load 56.18 (R 1 T:0 E 0)

Req' d Req' d El ap
Job ID User nane Queue Jobnane SessID TSK Menory Nds wallt S wallt
26023.ferm johnny submi t STDI N 810567 2 490nb 1 00: 05 R 00: 00

The PBSjob id is 26023 and the status of the job is Running (2nd to last column). Then, in the directory shown on the
command prompt, one can view one's own PBS scripts once the PBS job has started running (note: 'l will not execute here
since the directory's permission is 751)

http://www.nas.nasa.gov/~johnny/modules.html (4 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

turing:/cluster/hopper/PBS/ nompriv/jobs> cat 26023.ferm . SC
PBS batch job script built by G obus job nanager

#PBS -0 /u/johnny/. gl obus/.gass_cache/ gl obus_gass _cache 994811212

#PBS -e /u/johnny/. gl obus/.gass_cache/ gl obus_gass_cache_ 994811213

#PBS -1 ncpus=1

#PBS -v GLOBUS_GRAM MYJOB_CONTACT=URLX- nexus:// hopper. nas. nasa. gov: 24803/, \
X509 CERT_DI R=/ usr/ prg/ pkg/ gl obus/ 1. 1. 3/ . depl oy/ share/ certificates, \
GLOBUS_GRAM JOB_CONTACT=ht t ps: // hopper . nas. nasa. gov: 24802/ 810796/ 994811209/, \
GLOBUS_DEPLOY_PATH=/ usr/ pr g/ pkg/ gl obus/ 1. 1. 3/ . depl oy, \
GLOBUS | NSTALL_PATH=/ usr/ pr g/ pkg/ gl obus/ 1. 1. 3, \
X509 USER_PROXY=/ u/ j ohnny/ . gl obus/ . gass_cache/ gl obus_gass_cache_ 994811211,

Changing to directory as requested by user
cd /u/johnny
Executing job as requested by user

/1c/johnny/ nmodul e.csh < /dev/null &
wai t

turing:/cluster/hopper/PBS/ mom priv/jobs> cat 26282.ferm . SC
PBS batch job script built by G obus job nanager

#PBS -0 /u/johnny/. gl obus/.gass_cache/ gl obus_gass_cache 994885658

#PBS -e /u/johnny/. gl obus/.gass cache/ gl obus_gass cache 994885659

#PBS -1 ncpus=1

#PBS -v GLOBUS_GRAM MYJOB_CONTACT=URLXx- nexus:// hopper. nas. nasa. gov: 41340/ , \
X509 CERT_DI R=/ usr/ pr g/ pkg/ gl obus/ 1. 1. 3/ . depl oy/ share/ certificates, \
GLOBUS_GRAM JOB_CONTACT=htt ps: // hopper. nas. nasa. gov: 41339/ 1106709/ 994885655/ , \
GLOBUS_DEPLOY_PATH=/ usr/ prg/ pkg/ gl obus/ 1. 1. 3/ . depl oy, \
GLOBUS | NSTALL_PATH=/ usr/ pr g/ pkg/ gl obus/ 1. 1. 3, \
X509 _USER_PROXY=/ u/ j ohnny/ . gl obus/ . gass_cache/ gl obus_gass_cache_994885657,

Changing to directory as requested by user
cd /u/johnny
Executing job as requested by user

nodul e | oad npt. new
nodul e swap npt npt. new
[opt/ nmpt/ npt.new usr/bin/npirun -np 1 /1c/johnny/ nodul e.csh < /dev/nul

The last line of the PBS script isthe *wrong* way to run auser script (module.csh), but this example shows three points:

http://www.nas.nasa.gov/~johnny/modules.html (5 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

1. the addition of (jobtype=mpi) into the RSL triggers a hard-wired load and swap to the mpt.new module as implemented
by Judith Utley,

2. the'executable’ module.csh is run with a hard-wired mpirun command which is the wrong usage for running user
scripts, and

3. the actual version of mpirun that is being used in the module.csh script is/usr/bin/mpirun (which differs from the
mpirun in both the mpt and the mpt.new modules). This last point can be seen by running the experiment and looking
for the output to the 'which mpirun' command (left as an exercise to the reader). The reason for thisis somewhat
obscure, but it has to do with the fact that SGI's mpirun command calls the array services library, which, in turn,
clobbers the user's PATH environment and replaces it with: "/usr/sbin:/usr/bsd:/sbin:/usr/bin:/usr/bin/X11:". The
processes started by mpirun inherit this path, and within the module.csh script, the only mpirun that is found by the
‘which mpirun' command is the one under /usr/bin.

These three experiments show considerable variability in which (and whether or not) modules are loaded, and which (if any)
version of mpirun is accessed depending on how the Globusjob isrun. The major advantage of the method proposed in this
paper isto remove thisvariability by having the user decidein their own script what modules, environment, etc. they
would liketo havein running their job. Once this shell script iswritten, and the intention isto have it run as the executable
in a Globus job, the only appropriate jobtype to use in the RSL is'singl€’. Thisis the second piece of the puzzle.

(jobtype=single)

Turning now towards running distributed MPI jobs on 2 (or more machines) with MPICH-G2, the main question is whether or
not message passing between different machines using MPICH-G2 is possible with (jobtype=single). From a historical
perspective, Globus jobs using MPICH-G did not specify a 'jobtype’ parameter and thus defaulted to (jobtype=multiple). With
MPICH-G2, the RSL created by the mpirun script from the appropriate MPICH-G2 directory used a (jobtype=mpi) RSL
parameter.

The different 'jobtypes result in different ways that the MPI job is run. With (jobtype=multiple) the MPI job isrun as
(assuming no stdin):

pat h_t o_execut abl e/ npi _executable < /dev/null &

pat h_t o_execut abl e/ npi _executable < /dev/null &

pat h_t o_execut abl e/ npi _executable < /dev/null &

wai t

The number of occurrences of mpi_executable (in the batch script) is determined by the ‘count’ parameter in the RSL. When

the MPI job is run across multiple hosts, a similar repeating pattern of the mpi_executable appears in the batch script for each
subjob (the number of repetitions is determined by the ‘count’ parameter in each subjob).

With (jobtype=mpi) the MPI job is run as (again, assuming no stdin):

nodul e | oad npt. new

nodul e swap npt npt. new

[opt/ npt/ npt. new usr/ bin/npirun -np count _paraneter path_to_executabl e/
npi _executable < /dev/null

That is, the NAS hard-wired path to the vendor's new mpirun is used to run mpi_executable.

http://www.nas.nasa.gov/~johnny/modules.html (6 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

With the proposed (jobtype=single) way of running MPICH-G2 jobs viaa user script, the job is run as (assuming no stdin):
path to _user _script/user_script < /dev/null

Thisisfinefor an MPI job run out of asingle user script on asingle host. The question then is how one runs a distributed M Pl
job across severa hosts. The answer can be found by looking at the RSL generated by the mpirun script in either the MPICH-
G or MPICH-G2 directories. Reproduced here is an example taken from my Globus user tutorial.

evel yn% cat hel |l o_duroc. rsl

+

(&(resourceManager Cont act =" evel yn. nas. nasa. gov")
(count =4)
(j obt ype=npi)
(1 abel ="subj ob 0")
(envi ronnent =(GLOBUS_DUROC_SUBJOB | NDEX 0))
(directory="/u/johnny/duroc")
(execut abl e="/u/j ohnny/ dur oc/ hel | o_npi chg")

)

(&(resourceManager Cont act ="t uri ng. nas. nasa. gov")
(count =6)
(j obt ype=npi)
(1 abel =" subj ob 4")
(envi ronnent =(GLOBUS_DUROC _SUBJOB | NDEX 1))
(directory="/u/johnny/duroc")
(execut abl e="/u/j ohnny/ dur oc/ hel | o_npi chg")

)

This RSL isused to run asimple "Hello World" MPI program across evelyn and turing, using 4 processes on evelyn and 6
processes on turing. The only differences between the MPICH-G and MPICH-G2 RSLs are the greatly shortened
resourceManagerContact string in the latter version and the previously alluded to (jobtype=mpi) RSL parameter. The key
ingredient for the coordination and communication across different hostsis the GLOBUS_DUROC_SUBJOB_INDEX
environment. The label parameter is superfluous (but may be useful in interpreting error messages which refer to subjobs by
their label). Thiskey ingredient isthe third and final piece of the puzzle.

The above RSL will run an MPI job with atotal number of 10 processes (not counting the shepherd processes). The four
processes associated with GLOBUS _DUROC_SUBJOB_INDEX 0 will run with ranks O through 3, and the six processes
associated with GLOBUS DUROC_SUBJOB_INDEX 1 will run with ranks 4 through 9. The order of the subjobs described
by each GRAM type RSL (&(......)) isunimportant, but the indices associated with the

GLOBUS DUROC_SUBJOB_INDEX environment must run from 0 through the number of subjobs minus one.

In the section below, we look at several examples of running MPI jobs under MPICH-G2 with (jobtype=single). It must be
stressed that this is not the prescribed method for running MPICH-G2 jobs, therefore, several issues regarding correctness,

performance, and limitations will also be addressed. Subsequent to the completion of this document, I've learned from Nick
Karonis (see Appendix C.1) that the RSL attribute (jobtype=mpi) doesn't do anything to affect the MPI communication

performance. This RSL attribute only serves as atrigger to Globus to use the vendor-supplied mpirun to launch the application.
That's what is being done in the user script examples shown below.

EXAMPLES

Example 1: Hello World MPI program.

http://www.nas.nasa.gov/~johnny/modules.html (7 of 29) [2/4/2002 4:35:37 PM]

http://www.nas.nasa.gov/Groups/SciCon/Tutorials/globus_user/
http://www.hpclab.niu.edu/mpi/

Using modules with MPICH-G2 (and "loose ends")

For pedagogical reasons, I've included here al the necessary parts for running my MPI version of the "Hello World" program
using scripts.

evel yn: /u/johnny/ duroc/ npi ch-g2> cat hello_npi.f
program hel | o_npi
I Abasic "Hello Wrld" MPI programintended to denpnstrate how to
I execute an MPI program under G obus on the NAS | PG
i nclude "npif.h"
i nteger date_tinme(8)
character (I en=10) big_ben(3), hostnane
call MPI_INIT(ierr)
call date_and_tine(big_ben(1l), big ben(2), big ben(3), date_tine)
call MPI _COVW RANK(MPI _COMM WORLD, nyid, ierr)
call MPI _COW SI ZE(MPI _COVMM WORLD, nunprocs, ierr)
cal |l gethost nane(host nane)
print * 'Process #, nyid, 'of', nunprocs, 'at tine: ',
& big_ben(1l), big _ben(2),' on host: ',trim(adjustl (hostnane))
call MPI _FI NALI ZE(i err)
end

The gethostname routine is a Fortran-to-C interface that uses the well-known C function call by the same name:

evel yn:/ u/johnny/ duroc/ npi ch-g2> cat ftoc.c
voi d get host nane_(char *host nane)

{
#i ncl ude
get host nane(host nane, 10);
return;

}

The compilation and linking using the MPICH-G2-provided compiler scripts (which I've aliased via environment variable
settings):

evel yn: / u/ j ohnny/ dur oc/ npi ch-g2> echo $MPI CC
/ gl obus/ npi ch-n32/ bi n/ npi cc

evel yn: / u/j ohnny/ dur oc/ npi ch-g2> echo $MPI F90
/ gl obus/ npi ch-n32/ bi n/ nmpi f 90

isdonevia

evel yn: / u/j ohnny/ dur oc/ npi ch-g2> $MPICC -c ftoc.c
evel yn: / u/j ohnny/ dur oc/ npi ch-g2> $MPI FO0 -0 hell o_npichg2 hello_npi.f ftoc.o

The user script that enables the module command and |oads the mpt moduleiis:

evel yn: / u/johnny/ dur oc/ npi ch-g2> cat hel |l o_npi chg2. scr
#! [bin/csh
source /opt/nmodul es/ nodul es/init/csh

http://www.nas.nasa.gov/~johnny/modules.html (8 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

nodul e | oad npt
npirun -np $NP ./ hel | o_npichg2

It takes an environment variable (which I've called NP) that must be set in the RSL:

evel yn: / u/johnny/ duroc/ nmpi ch-g2> cat hello_script.rsl
+
(&(resourceManager Cont act =" evel yn. nas. nasa. gov")
(rsl _substitution = (nprocs "4"))
(count =$(nprocs))
(j obt ype=si ngl e)
(envi ronnent =(GLOBUS_DUROC SUBJOB | NDEX 0) (NP $(nprocs)))
(directory="/u/johnny/ duroc/ npi ch-g2")
(execut abl e="/u/j ohnny/ dur oc/ npi ch-g2/ hel | o_npi chg2. scr")
)
(&(resourceManager Cont act ="turi ng. nas. nasa. gov")
(rsl _substitution = (nprocs "6"))
(count =$(nprocs))
(j obt ype=si ngl e)
(envi ronnment =(GLOBUS_DUROC_SUBJOB_| NDEX 1) (NP $(nprocs)))
(directory="/u/johnny/ duroc/ npich-g2")
(execut abl e="/u/j ohnny/ dur oc/ npi ch- g2/ hel | o_npi chg2. scr™)
)

This RSL assumesthat | have already setup the appropriate directory structure on evelyn and turing, and that | have the
appropriate scripts (made executable) and MPI executables in the correct locations on the two machines.

The Globusjob islaunched via:
evel yn: / u/ j ohnny/ dur oc/ npi ch-g2> gl obusrun -s -f hello_script.rsl
with the result:

Job Limts not enabled: Job not found or not part of job
Job Limts not enabled: Job not found or not part of job

Process # 4 of 10 at time: 20010709 145346.692 on host: turing
Process # 5 of 10 at tine: 20010709 145346.699 on host: turing
Process # 6 of 10 at tinme: 20010709 145346.692 on host: turing
Process # 8 of 10 at tinme: 20010709 145346.692 on host: turing
Process # 7 of 10 at tine: 20010709 145346.692 on host: turing
Process # 9 of 10 at tine: 20010709 145346.692 on host: turing
Process # 0 of 10 at tinme: 20010709 145346.660 on host: evelyn
Process # 1 of 10 at tine: 20010709 145346.660 on host: evelyn
Process # 2 of 10 at tinme: 20010709 145346.660 on host: evelyn
Process # 3 of 10 at time: 20010709 145346.660 on host: evelyn

(Since the upgrade of the OSto IRIX 6.5.10f, there have been some error messages that presage the output, but they are
iNnnocuous.)

The output shows the correct number of processes and rank running on evelyn and turing. The time stamp isin the form
YYYYMMDD HHMMSS.fractional_seconds. This example shows that the two subjobs are synchronized to start at the same

http://www.nas.nasa.gov/~johnny/modules.html (9 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

time (modulo atime zone change) on the MPI_INIT call. | have run this example many times, and occasionally, have seen an
approximately 5 minute delay between the time stamps on the two hosts. Thisis *not* due to the clocks on the two hosts going
out of sync, but appears to arise from some underlying communication layer which | do not yet understand. It is unrelated to
the (jobtype=single) RSL parameter since the same problem arises with (jobtype=mpi).

Example 2: ring example

This example uses the ring.c code from the MPICH-G2 website. The new wrinkle is that the executable and scripts all reside
on one machine, evelyn, and the goal isto run this MPI job across 3 machines: evelyn, turing, and rogallo. The user script
(ring.scr), executable (ring), and RSL (ring_script.rdl) all reside under evelyn:/u/johnny/duroc/mpich-g2. The script (ring.scr)
can be staged (or transferred) to turing and rogallo viathe $(GLOBUS GASS URL)# prefix. The staged script will residein
the .globus/.gass_cache directories on turing and rogallo for the duration of the job and will be be deleted automatically at the
end of the job.

TheRSL is:

evel yn: /u/johnny/ duroc/ nmpi ch-g2> cat ring_script.rsl
+
(&(resourceManager Cont act =" evel yn. nas. nasa. gov")
(rsl _substitution=(nprocs "5"))
(count =$(nprocs))
(j obt ype=si ngl e)
(di rect ory=$(HQOVE) / dur oc/ npi ch- g2)
(envi ronnent =(GLOBUS_DUROC SUBJOB | NDEX 0) (NP $(nprocs)))
(execut abl e=$(HOVE) / dur oc/ npi ch- g2/ ri ng. scr)
)
(&(resourceManager Cont act ="t uri ng. nas. nasa. gov")
(rsl _substitution=(nprocs "4"))
(count =$(nprocs))
(j obt ype=si ngl e)
(envi ronnent =(GLOBUS_DUROC SUBJOB | NDEX 1) (NP $(nprocs)))
(execut abl e=$(GLOBUSRUN_GASS URL) #$(HOVE) / dur oc/ npi ch- g2/ ri ng. scr)
)
(&(resourceManager Cont act ="rogal | o. | arc. nasa. gov")
(rsl _substitution=(nprocs "3"))
(count =$(nprocs))
(j obt ype=si ngl e)
(envi ronnent =(GLOBUS_DUROC SUBJOB | NDEX 2) (NP $(nprocs)))
(execut abl e=$(GLOBUSRUN_GASS URL) #$(HOVE) / dur oc/ npi ch- g2/ ri ng. scr)

)

Notice that for the subjob to be run on evelyn there is adirectory change to $HOM E/duroc/mpich-g2, where my ring
executabl e resides. For the subjobs to be run on turing and rogallo, the ring.scr script will do aremote file transfer of the ring
executable and run from the defaulted $HOME directories.

Thering.scr script is:

evel yn: / u/johnny/ duroc/ nmpi ch-g2> cat ring.scr
#! [bin/csh

source /opt/ nodul es/ nodul es/init/csh

nodul e | oad npt

http://www.nas.nasa.gov/~johnny/modules.html (10 of 29) [2/4/2002 4:35:37 PM]

http://www.hpclab.niu.edu/mpi/

Using modules with MPICH-G2 (and "loose ends")

if (" hostname’™ != "evelyn") then

scp evel yn. nas. nasa. gov: duroc/ npi ch-g2/ring .
endi f
npirun -np $NP ./ring

In this example, the line "source /opt/modules’'modules/init/csh” is crucial to enable the module command. It is not
automatically enabled for users accessing rogallo at the current time, and so sourcing $SHOME/.cshrc (via#! /bin/csh) is not
sufficient for the module command, but is sufficient for al the other commands in the script. Another important, albeit subtle,
detail isthe use of 'scp’ in the file transfer. On rogallo, the 'scp’ command is the GSI enabled version of 'scp', which means that
it does not require a password when avalid full proxy exists. When the subjob on rogallo starts, it receives afull proxy from
evelyn which remains valid for the duration of the job. On turing, the 'scp’ command is not GSI enabled, and uses the rhosts or
/etc/hosts.equiv with RSA host authentication method to authenticate. Since turing-ec.nas.nasa.gov isin evelyn's
letc/hosts.equiv file, the scp will also not require a password for file transfer. Lastly, one could have added (to ring.scr) the
deletion of the 'ring' executable at the end of the job when "hosthame™ != "evelyn". | have chosen to leave the 'ring' executable
behind to give one awarm and fuzzy feeling that everything is working as expected.

Execution of thisjob appears as:

evel yn: / u/j ohnny/ duroc/ nmpi ch-g2> gl obusrun -s -f ring _script.rsl

Job Limts not enabled: Job not found or not part of job

Job Limts not enabled: Job not found or not part of job

Master: end of trip 1 of 1: after receiving passed_numr12 (should be =trip*nunpr
ocs=12) from source=11

The passed_num=12 corresponds to the sum of 5, 4, and 3 processes run on evelyn, turing, and rogallo, respectively.

Example 3: Nick Karonis' root_of problem.c and bad.c

As noted in the beginning of this document, Nick Karonis discovered a bug in SGI's implementation of MPI that caused some
codes to hang. The link to that email also leads to the two codes that he provided. The code "bad.c" reproduces the hang when
run using MPICH-G2 with settings procA = 1, procB = 2, but works with SGI's MPI independent of procA and procB settings.
This assertion cannot be verified now by running a Globus job with (jobtype=mpi) on the NAS machines because the mpt.new
module, which fixes the hang, has been hard-wired into (jobtype=mpi) jobs. However, with (jobtype=single) and running a
script as the executable, one can freely switch between modules and verify the assertion. One such script is given below.

The"root_of_problem.c" code differs from "bad.c" only in an MPI_Comm_dup function call (and another printf statement),
and mimics how MPICH-G2 implements the native MPI_Intercomm_create function call in the "bad.c" code. MPICH-G2
implements some MPI functions by calling one or more vendor-supplied MPI functions. This code will hang when run with
settings procA = 1, procB = 2 and using SGI's mpt.1.4.0.1 or *some* earlier modules (code fails/hangs with versions 1.4.0.1,
1.4.0.0, and 1.3.0.4, passes/runs with versions 1.3.0.0, 1.2.1.2, and 1.4.0.3).

Asan aside, it isworth mentioning that the mpt moduleis used in three different phases. (1) During compilation/linking, the
MPI library is used to resolve all the MPI function calls, (2) When launching the MPI job with SGI's mpirun, the version of the
mpirun command invoked depends on which mpt module is loaded and, therefore, what isin the user path, and (3) During
runtime, the version of the MPI library accessed depends on which mpt module isloaded. SGI uses dynamic libraries which
are accessed during runtime as opposed to being statically compiled into the executable. It isonly in the third phase that the
version of the loaded mpt module matters for creating the hang. But for practical purposesit is best to be consistent in using
the same modules for all three phases.

In this example, we will run both codes across evelyn and turing, with three processes on evelyn and two on turing. It turns out

http://www.nas.nasa.gov/~johnny/modules.html (11 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

that the processes with ranks 0, 1, and 2 all need to be on the same host to reproduce the hang. The user script (hang.scr) is.

#!' / bin/csh
source /opt/ nodul es/ nodul es/init/csh
nodul e | oad npt. new

if ("hostnane™ != "evelyn") then

scp evel yn. nas. nasa. gov: dur oc/ npi ch- g2/ bad .

scp evel yn. nas. nasa. gov: dur oc/ npi ch- g2/ r oot _of _problem .
endi f

npirun -prefix "%@" -np $NP ./bad
#npirun -prefix "%@" -np $NP ./root_of _problem

if ("hostname’™ != "evelyn") then
rm-f bad root_of problem
endi f

To obtain the cases that hang, one loads mpt instead of mpt.new in the script.

WARNING: If you try running the cases that hang under MPICH-G2, remember to clean up the stray processes after
experimentation. The stray processes will continue to consume resour ces and rack up CPU time.

Note that | have commented out one of the mpirun commands. The current setup in MPICH-G2 does * not* allow running two
M PICH-G2-compiled executables out of the same script (in aseria fashion asin the script above). Attempts to run a second
MPI program out of the same script will encounter error messages of the type:

gl obus_duroc_barrier: aborting job!
gl obus_duroc_barrier: reason: our checkin was invalid!

It must be emphasized that thisis a limitation inherent in MPICH-G2 and not in using (jobtype=single). The prescribed
(jobtype=mpi) method of running MPI jobs under MPICH-G2 allows running only one MPICH-G2 job in asingle Globus job
submission. This limitation presents a problem for a class of problems that require running distributed, complex MPI jobs
involving pre- and/or post-processing, all of which might entail running two or more MPI jobs out of the same script. The key
to the solution isto realize that the limitation is present only in MPICH-G2 compiled executables, but not with native MPI. To
run the afore-mentioned "complex™ problem, one would build the pre- and/or post-processing MPI executables with the native
MPI library, and the running of these parts of the script will be done on only one host (or more than one host aslong as it is not
distributed across hosts in the MPICH-G2 sense). Presumably, the computation in the pre- and/or post-processing parts of the
job are less time-consuming and do not need to be run as a single code distributed across two or more hosts. More discussion
on this point will be presented in Example 4.

The last point to note about the user script above is the option given to mpirun which enables the output from the different
processes to be prefixed with a hostname. With a user script, oneis free to make this choice, which would otherwise be lacking
with (jobtype=mpi).

The RSL used for this exampleis:

http://www.nas.nasa.gov/~johnny/modules.html (12 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

(&(resourceManager Cont act =" evel yn. nas. nasa. gov")
(rsl _substitution=(nprocs "3"))
(count =$(nprocs))
(j obt ype=si ngl e)
(di rect ory=$(HQOVE) / dur oc/ npi ch- g2)
(envi ronnent =(GLOBUS_DUROC _SUBJOB | NDEX 0) (NP $(nprocs)))
(execut abl e=$(HOVE) / dur oc/ npi ch- g2/ hang. scr)
)
(&(resourceManager Cont act ="t uri ng. nas. nasa. gov")
(rsl _substitution=(nprocs "2"))
(count =$(nprocs))
(j obt ype=si ngl e)
(envi ronnent =(GLOBUS _DUROC SUBJOB | NDEX 1) (NP $(nprocs)))
(execut abl e=$(GLOBUSRUN_GASS_URL) #$(HOVE) / dur oc/ npi ch- g2/ hang. scr)

Example 4: "Real" code example

All three of the previous examples could have been run using the conventional MPICH-G2 approach with (jobtype=mpi). In
this example, we consider some issues that "real” MPI applications face which cannot be run satisfactorily in the conventional
(jobtype=mpi) approach.

Issues:

1. Need to alocate an extra processor for the shepherd process to avoid performance problems. Whenever an MPI job
with NP processes are run via "mpirun -np NP ...", there are actually NP+1 instances of the executable running. The
extra"shepherd" process consumes very little CPU time, but is capable of destroying any load balancing built into the
code. At aminimum, thisimplies that setting NP to the value in the (count=##) RSL parameter may be inadequate.
Additionally, on some time-sharing machines such as the Crays, the batch job daemons that monitor job resource usage
might kill the job if they catch NP+1 processes running when only NP were requested/allowed.

2. Even if the NP parameter in mpirun is set to count - 1, thiswould still be inadequate for hybrid MPI+OpenMP codes.
These codes take advantage of any multi-level parallelism present in the algorithm by using MPI for the (outer) course-
grained parallelism and OpenMP for the (inner) fine-grained parallelism. In this case, the value of NP will need to be
much less than the "count” RSL parameter which specifies the processor count resource.

3. "Real" MPI applications require input/data files. There are many ways that the filenames of these input/data files
become "associated” with those required for the application. For example,

In -s input_case47.dat fort.10

creates asymlink between a particular input/data file with an expected target. This could aso be accomplished with the
‘assign' command which might be adorned with other 'assign’ attributes for controlling data conversion during 1/0. The
input/data filenames could be renamed just prior to launching mpirun. Certainly, one could "prepare” all the filename
associations (vialn, assign, or mv commands) before launching the MPICH-G2 job, but that would be very restrictive,
especially for projects where many cases need to be run.

4. "Rea" MPI applications involve substantial pre- and/or post-processing around the mpirun command. These go beyond
making sure that the requisite input/datafiles are in the right place (Issue 3). Again, these steps could be segregated

http://www.nas.nasa.gov/~johnny/modules.html (13 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

away from launching the MPICH-G2 job, but this would be a mgjor design flaw. The directory where the execution
takes place could be volatile and exist only for the duration of the MPICH-G2 job.

5. The default set of modules (MIPSpro, mpt, and scsl) may be inadequate for certain applications at any given time. In
Example 3 above, the problem attributed to the mpt module only manifested itself in some versions of the mpt module.

These are just afew of the issues that could be resolved by using the method proposed in this document.

One of the main advantages of using MPICH-G2, which has heretofore not been mentioned except for a hint in the previous
example, isthe ability to "tie" two or more applications together by passing data between the applicationsviaMPI. The
applications in the two subjobs do not have to be the same. In fact, in the more general case using scripts and (jobtype=single),
the work done in the different subjob scripts could be completely different albeit related through the requisite passing of
information. In fact, even this last coupling is unnecessary except for areason to couple and use MPICH-G2. The key to the
coupling is that codes compiled with the MPICH-G2 library will be synchronized at the MPI_INIT function call, and the
processor ranks are determined by the processor counts passed to mpirun in conjunction with the

GLOBUS DUROC_SUBJOB_INDEX environment. If the script in one subjob begins to run before the other, it will run up to
the code compiled with the MPICH-G2 library and then stall and spin cycle at the MPI_INIT funtion call waiting for the other
subjob to reach its corresponding MPI_INIT function call. If the two subjobs are run on separate batch systems, some carein
choosing the maxWall Time resource must be exercised to allow for asynchronous job start times.

Example 5: NAS Parallel Benchmarks (NPB2.3)

In the previous examples, we looked at the issues of correctness and limitations accompanying the use of (jobtype=single) to
run MPICH-G2 jobs. In this example, we look at the performance issue. That is, whether jobs run slower when the jobtype
parameter is switched from mpi to single. For this, we examine the performance of some well-known NAS Parallel
Benchmarks (NPB) run under different scenarios.

The three NPB's chosen for this study are:

. bt: linear equations for implicit scheme in Navier-Stokes eguation
. lu: LU decomposition for Navier-Stokes equation
. p: linear equations for Navier-Stokes equation

They can each be compiled and run with different 'Classes. Class A isthe smallest case and class B mimics a medium size
problem. The number of processes required to run each benchmark is also built in at compilation time. Thus, lu.A.4
corresponds to the class A version of the lu benchmark run with 4 processes. Table 1 shows the timings for the three
benchmarks run as a single MPICH-G2 job with 4 CPUs on one host (jobtype=mpi) or split as two subjobs with 2 CPUsin
each subjob (2+2). The latter case was run with (jobtype=mpi) and with (jobtype=single), with both 2-CPU subjobs on the
same host (hopper or steger) or split between two hosts (2 CPUs on hopper and 2 CPUs on steger).

All experiments were run numerous times over a period of three weeks. The reported timings are averages of the 5 lowest
elapsed walltimes as reported by each benchmark, and, therefore, represent the best case scenarios that one could expect on
production machines. Both hopper and steger are SGI Origin 2000 machines containing 250 MHZ P27 processors and are
located in the same machine room at NASA Ames Research Center.

The versions of the compiler and MPT (message passing toolkit) modules used in all the calculations for Table 1 correspond to
MIPSpro.7.3.1.2m and mpt.1.4.0.3, respectively. The compilation of all the executables used the MPICH-G2 provided script
/globus/mpich-64/bin/mpif77 and compiler options "-O2 -64".

Table 1: Timngs on one host versus split between hopper and steger

http://www.nas.nasa.gov/~johnny/modules.html (14 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

(el apsed tinmes in seconds)

code one host one host one host hopper+steger hopper+steger
(4) (2+2) (2+2) (2+2) (2+2)
(npi) (npi) (single) (npi) (single)
lu. A 4 270 282 282 281 281
sp.A. 4 353 367 367 401 401
bt.A 4 651 655 655 655 655

Thefirst, and most important, conclusion one infers from the datain Table 1 isthat there is no performance penalty
asscociated with using (jobtype=single) instead of (jobtype=mpi). The average of the 5 lowest elapsed walltimes are identical
for the MPICH-G2 jobs run with either jobtype. Comparing the timings for the (2+2) split subjobs versus the unsplit case in
column 1, one sees a 4% increase in time for the split case in [u.A.4, less than 1% increase in bt.A.4, and for sp.A .4, thereis
either a 4% increase when the subjobs are on the same host or 14% increase when the subjobs are on different hosts. From
these numbers, one can infer that, of the 3 benchmarks, bt.A.4 contains the least amount of communication (in a relative sense)
between processes of ranks 0 and 1 with those of ranks 2 and 3. Data for sp.A .4 shows the expected behaviour that the timings
increase when subjobs are split between hosts rather than being on the same host. Although not indicated in Table 1, the best
single host timings were obtained on hopper.

It isinteresting to see how these timings change when the two subjobs are split between hosts that are geographically separated
at great distances. One 2-CPU subjob was run on hopper or steger on the West Coast and the other 2-CPU subjob was run on
rogallo or whitcomb on the East Coast.

The default compiler on rogallo/whitcomb is version MIPSpro.7.3.1.2m and the MPT module is the older mpt.1.2.1.0. The
newer mpt.1.4.0.3 module was not available on either rogallo or whitcomb. To verify that the older mpt module did not
contribute to any performance penalties on rogallo/whitcomb, the unsplit 4-CPU MPICH-G2 jobs were re-run on
rogallo/whitcomb. The timings for these runs are shown in column 1 of Table 2, and they show no performance degradations
in using the older mpt module. Rogallo/whitcomb are also Origin 2000 machines containing 250 MHZ 1P27 processors, but
they are smaller machines. Rogallo contains 4 processors, whitcomb contains 16, while hopper and steger contain 64 and 256
processors, respectively.

Not surprisingly, the elapsed walltimes increase dramatically when the communication needs to go across large distances. The
increase in times for the best case scenarios are between 54% and 180%. In fact, there is quite a bit more scatter in the raw data
duein part to the unpredicability of the network traffic. Jobs on rogallo/whitcomb are not run on dedicated nodes and care
must be exercised to avoid interference from other jobs. Most of the data were collected when there were no other jobs running
on rogallo/whitcomb. Thereis the possibility to improve the quality of service provided by the network, but that investigation
is outside the scope of thiswork.

The important point to note again is that there is no performance penalty associated with using (jobtype=single) instead of
(jobtype=mpi).

Table 2: Timngs on one host versus split between steger (or hopper) and
whitconmb (or rogallo) (el apsed tinmes in seconds)

code whi t conb st eger +whi tconb st eger +whi t conb
(4) (2+2) (2+2)
(npi) (npi) (single)

http://www.nas.nasa.gov/~johnny/modules.html (15 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

lu. A 4 268 412 412
sp. A 4 352 986 983
bt. A 4 652 1023 1016

Larger CPU experiments were run with Class B benchmarks. The results are shown in Table 3. Again, no performance penalty
is seen with using (jobtype=single). The most surprising, and as yet unexplained [*], result is the significantly larger timings
for bt.B.16 when the two subjobs are run on the same host as opposed to separate hosts. Similar to the Class A results, the
sp.B.16 benchmark incurs the greatest performance penalty when split between two separate hosts.

[*] The current thinking about this surprising result is that the communication pattern in the bt.B.16 benchmark "involves' the
shepherd processes to a larger extent (Table 4 shows that adding more processors to account for the shepherd processes
improves the performance of the one host 8+8 bt.B.16 results the most). Adding to thisissue is the possibility that the system
sockets involved in the MPI communication between subjobs -- namely, the part that goes over TCP/IP -- might be busy doing
both awrite and a read when the two 8 processor subjobs are on the same machine. When the job is split between two
machines, one half of the TCP communication is moved to a different machine (see Appendix C.1).

Table 3: Timngs on one host versus split between hopper and steger
(el apsed tinmes in seconds)

code one host one host one host hopper+steger hopper+steger
(16) (8+8) (8+8) (8+8) (8+8)
(i) (i) (single) (i) (single)
lu.B.16 313 335 335 334 334
sp.B. 16 355 411 411 520 520
bt.B.16 676 750 753 691 690

Finally, in Table 4, the effect of requesting extra CPUs for the shepherd processes on the runtimes is explored. Each subjob
contains its own shepherd. Comparing the timingsin Table 4 with the corresponding onesin Table 3, we see that the
performance improvement could be as little as 1% to as much as 9% for the bt.B.16 benchmark run split on one host. The odd
man out is the lu.B.16 benchmark which actually shows a 1% performance degradation when run with extra CPUs and split on
one host. Generally, alocating extra CPUs for the shepherd processes hel ps the much larger CPU count jobs more than the
smaller CPU count jobs. On hopper/steger, allocating an extra node (2 CPUSs) for each shepherd process when each subjob
requires only 8 CPUs provides a greater opportunity for processes to be scheduled on nodes that are further away from their
communicating partners and their private data. Instead of the 8 processes for each subjob being confined to a physically "tight"
8 CPU cluster, the extra node for the shepherd process provides opportunity for some communication and memory access to be
further apart.

Table 4: Timngs for runs with scripts that account for shepherds
(el apsed tinmes in seconds)

code one host hopper +st eger
(8+8+2shepherds) (8+8+2shepherds)
(single) (single)
lu.B. 16 338 329

http://www.nas.nasa.gov/~johnny/modules.html (16 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

sp. B. 16 391 499

bt.B. 16 693 689
The RSL used to run the |u.B.16 benchmark in the last column of Table4 is:

+
(& (resourceManager Cont act =" st eger. nas. nasa. gov")
(rsl _substitution = (nproc "9"))
(count = $(nproc))
(maxWVal | Ti ne=15)
(j obt ype=si ngl e)
(environnent = (G.OBUS_DUROC SUBJOB | NDEX 0) (NP $(nproc)))
(executable = /path_to_user_script_on_steger/lu.B. 16. shepherd. scr)
(stdout = /path _to_stdout file_on_steger)
(stderr = /path_to_stderr _file_on_steger)

(& (resourceManager Cont act =" hopper . nas. nasa. gov")
(rsl _substitution = (nproc "9"))
(count = $(nproc))
(maxWal | Ti me=15)
(j obt ype=si ngl e)
(environnent = (GLOBUS_DUROCC SUBJOB | NDEX 1) (NP $(nproc)))
(executable = /path_to _user_script_on_hopper/|u. B. 16. shepherd. scr)
(stdout = /path_to_stdout _file_on_hopper)
(stderr /path_to _stderr_file_on_hopper)

and the user script, lu.B.16.shepherd.scr, is:

#!' / bin/csh

source /opt/ nodul es/ nodul es/init/csh

nodul e | oad npt. new

set nunproc = “expr SNP - 1°

npirun -np $nunproc /path_to_executabl e/l u.B. 16

Note that the 'count’ RSL parameter is chosen to be 9 to account for the extra shepherd process in each subjob, and the user
script substracts that extra process out (numproc = 9 - 1 = 8) to start the mpirun with the correct number of processes.

Summary

The three key ingredients to using modules with MPICH-G2 are:

1. The'executable' parameter in the RSL is a user-provided script which enables the module command by sourcing the
file:
/opt/modules/modul eg/init/csh -- for C shell
(equivalent files are available for tcsh, bash, ksh, or sh)

http://www.nas.nasa.gov/~johnny/modules.html (17 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

2. The'jobtype' parameter must be 'singl€e' to run a user script.

3. The'environment' parameters GLOBUS DUROC_SUBJOB_INDEX must be set for each subjob starting from O to the
number of subjobs minus 1.

Several issues regarding correctness, limitations, and performance associated with using (jobtype=single) instead of the
prescribed (jobtype=mpi) were addressed in the examples. The approach presented here is robust since it involves running a
user script as the executable.

Acknowledgment

| thank Ray Turney for helping me get started with running the NAS Parallel Benchmarks (NPB2.3) and both Samson Cheung
and Scott Emery for useful discussions on the NPB2.3 timing results.

Appendices

A.l

Subj ect: Re: request for OVERFLOWt hat denonstrates bug?
Date: Wed, 18 Apr 2001 10:21:58 -0500
From "N cholas T. Karonis" <karoni s@l ynpus. cs. ni u. edu>
To: <recipient_list_omtted>

we have figured why testg2. F (and therefore overfl ow) hangs when you use
npi ch-g2 but why it doesn't hang when using sgi's npi. unfortunately, the
root of the problemis an error in sgi's inplenentation of npi.

the code below (bad.c) is a distillation of the problemthat reliably
reproduces the hang when using npich-g2 and setting procA = 1; procB = 2;.
note that the code bel ow al ways wor ks (i ndependent of procA procB settings)
when using sgi's npi.

-------- bad. c
#i ncl ude <npi. h>
#i ncl ude <stdio. h>

/*
* intended to be run with at |east 3 procs
*/
int main(int argc, char ** argv)
{
MPI _Conm new_i nt er conmm
i nt ny_rank;
int rrank;

i nt procA, procB;

MPlI Init(&argc, &argv);
MPI _Comm r ank(MPI _COVWM WORLD, &ny_rank);

http://www.nas.nasa.gov/~johnny/modules.html (18 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")
printf("%l: Entering main()\n", ny_rank); fflush(stdout);
/* pick one of the following two settings for procA, procB */

/* uncomment these and programw ||l work */
procA = 0; procB = 2;

/* unconmment these and programw ||l hang */
[* procA =1; procB = 2; */

if (nmy_rank == procA || ny_rank == procB)

{
if (nmy_rank == procA)
{
rrank = procB;
}
el se
{
rrank = procA
}

printf("%l: Calling MPI _Intercommcreate()\n", ny_rank);
fflush(stdout);
MPI | ntercomm creat e(MPl _COW SELF, O,
MPI _COVW WORLD, rrank,
0, &new_intercom);

}

printf("%: Calling MPI _Finalize()\n", ny_rank); fflush(stdout);
MPI _Finalize();

} /* end main() */
———————— bad. c

this raises the question (the one you posed) why does the code above

work with sgi's npi but not with npich-g2? the answer is in npich-g2's

i npl ementation of MPI _Intercommcreate. npich-g2 inplenments sone npi
functions by calling one or nore vendor-supplied npi functions.

for exanple, MPI _Intercommcreate is inplenmented by calling sgi's

MPI _Intercommcreate followed by a call to sgi's MPI _Comm dup (the details
of _why_npich-g2 does this are too conplicated to describe over enmail).

consi der the code bel ow (root_of problemc, a slight nodification of the
exanpl e program above) which approxi mately nodels the calls npich-g2 makes
to sgi's npi in inplenenting MPI _Interconmcreate. if you conpile and run
the program bel ow using sgi's nmpi with procA = 1; procB = 2; i think you will
find that it will hang.

-------- root _of problemc
#i ncl ude <npi . h>
#i ncl ude <stdio. h>

/*

http://www.nas.nasa.gov/~johnny/modules.html (19 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

* intended to be run with at |east 3 procs
*/
int main(int argc, char ** argv)
{
MPI _Conm new_i nt er comm
MPI _Comm new_conm
i nt nmy_rank;
int rrank;
i nt procA, procB;

MPI _Init(&argc, &argv);
MPI _Comm r ank(MPI _COVM WORLD, &ny_rank);
printf("%: Entering main()\n", ny_rank); fflush(stdout);

/* pick one of the following two settings for procA, procB */

/* uncomment these and programw |l work */
procA = 0; procB = 2;

/* uncomment these and programw || hang */
/* procA =1; procB = 2; */

if (ny_rank == procA || ny_rank == procB)
{
if (nmy_rank == procA)
{
rrank = procB;
}
el se
{
rrank = procA
}

printf("%l: Calling MPI _Intercommcreate()\n", ny_rank);
fflush(stdout);
MPI | ntercomm create(MPI _COW SELF, O,
MPI _COVW WORLD, rrank,
0, &new_intercom;

printf("%l: Calling MPI _Comm dup()\n", ny_rank); fflush(stdout);
MPI _Comm dup(new_i ntercomm &nhew _comm) ;
}

printf("%: Calling MPI _Finalize()\n", ny_rank); fflush(stdout);
MPI _Finalize();

} /* end main() */
-------- root _of _problemc

unfortunately, there's not nuch that we can do in npich-g2 to resolve this
problem... certainly not in the short term we would have to re-design that
portion of both the npich and the gl obus2 device |ayers to "code around"” this
error in sgi's inplenentation of npi.

http://www.nas.nasa.gov/~johnny/modules.html (20 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

ot her possible alternatives are (a) nodify overflow to avoid triggering
the problematic sgi npi code and/or (b) petition sgi to correct their

i npl ementation of npi. i don't know how nuch 'influence' nasa and/or
the ipg has with sgi, but the later may be a reasonable alternative to
pur sue.

i'msorry that the news could not have been nore hopeful. i know that
it would have been better to hear that you uncovered a bug in npich-g2
that we have/woul d fi x.

ni ck

Subj ect: solution nay be as sinple as an upgrade
Date: Fri, 20 Apr 2001 16:55:10 -0500
From "N cholas T. Karonis" <karoni s@l| ynpus. cs. ni u. edu>
To: <recipient list_omtted>

there have been a couple of people at sgi that have | ooked at the

root _of problemc file i sent. it |ooks as though that this is a bug
that has been fixed ... you may need only upgrade to a |later version of
sgi's nmpi. here is what i've been told throughout the course of the day.

1. howard pritchard tells ne that the bug was fixed as of MPT 1.4.0.2
(he was able to reproduce the hang in MPT 1.4.0.1, but it passes with
MPT 1.4.0.2). they are currently up to MPT 1.5.

2. bonita ntpherson contacted bron nel son and he ran root_of probl em
on turing and found that it ran to conpl eti on when he used
"nmodul e swap npt npt.1.4.0.3".

could you please try your testg2.F with npich-g2, but making sure that you
are using sgi's MPT 1.4.0.2 or later? if that runs to conpletion, could you
then try overflowwth MPT 1.4.0.2 or |ater?

pl ease |l et me know how t hi ngs go.
ni ck

The standard "trick™ to provide an instantaneous PATH environnment is to
cause $HOVE/ .cshrc (or $HOVE/ .profile) to run just prior to executing

http://www.nas.nasa.gov/~johnny/modules.html (21 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

the command(s) by using the syntax:
/ bin/csh -¢c <conmand> (or /bin/sh -c <comand>)

One then only needs to renenber that csh (or sh) is in /bin, and the
<command> can reside in any directory that is searched fromthe
i nst ant aneous PATH envi r onnent.

Thus, while both the commands:

gl obus-job-run evelyn Is

and

gl obusrun -s -r evelyn ' & executabl e=ls)’

will return the error:

GRAM Job submni ssion fail ed because the executabl e does not exist (error code 5)
ei t her,

gl obus-job-run evelyn /bin/csh -c |Is

or

gl obusrun -s -r evelyn ' & execut abl e=/ bi n/ csh) (argunents="-c |s")"'

wi Il produce the expected result (a listing of $HOVE). Perhaps the

only unexpected aspect is that running /bin/env or /bin/printenv under

G obus on the NAS | PG nachi nes shows that the PATH environnment is

al ready defined. This is due to a nodification of the d obus source

at NAS that invokes $HOVE/ .cshrc *after* the A obus job starts at the
target location at NAS. Prior to launching the d obus job, the executable
is searched only in $HOVE if no path (relative or absolute) to the
executable is provided. See the dobus Quick Start Guide for other

exanpl es of using this method.

Subj ect: Re: [d obus-discuss] Interesting Problem
Date: Thu, 06 Sep 2001 11:13:11 -0500
From Steve Tuecke <tuecke@rts. anl.gov>
To: Allen Holtz <Allen. Holtz@rc. nasa. gov>
CC. di scuss@l obus. org

The GRAM servi ces does not source your local dot files. This was a very
consci ous design choice, for the follow ng reasons:

http://www.nas.nasa.gov/~johnny/modules.html (22 of 29) [2/4/2002 4:35:37 PM]

http://www.globus.org/toolkit/documentation/

Using modules with MPICH-G2 (and "loose ends")

* Starting a shell, sourcing user environnments, etc add significant
overhead to job startup path. Many applications do not require this. |If
you want things run under a normal shell environnent you can build this
yoursel f as appropriate. But you don't want to inpose this on all jobs.

* Much of the point of GRAMis to not require users to have to custom ze
each and every machine to which they submt jobs. So the base assunption
is that you have no assuned |ocal environnent, and its up to the submtting
job to build up the environnent it needs. Various hooks are supplied with
GRAM to hel p you bootstrap up, such as RSL variable that you can use in
your submission to find the | ocal globus install path
(GLOBUS | NSTALL_PATH), a script (globus-sh-tools) that you can source to
get full paths for a bunch of common prograns, etc. |I'msure there is nuch
nore that could be done to inprove this, though we have no specific plans
at the nonent.

* The whol e nodel of assuming a shell with user dot files breaks down
with sone scheduling systens, and sone resource setups.

- St eve

At 10:21 AM 9/6/2001, Allen Holtz wote:

>Hi ,

>

> W' ve got a user here who is trying to run gsincftp from
>a d obus submission. Every tinme he tries to run the job it
>fails because gsincftp cannot be found. It appears that

>d obus is not obtaining the PATH environnent variable. Qur

>j ob manager is LSF.

>

> Wien | submit a job, say "printenv," directly to LSF | get
>pack several environnment variables including the PATH vari abl e.
>When | submit the job using G obus there are several environnent
>vari abl es that are not set, including PATH So this |eads ne
>to believe that sonmehow our login scripts are not run when we
>submit the job through d obus. Has anyone else run into this
>pr obl enf

>

>Thanks,

>

>Al' | en

>o -

>All en Holtz

>Phone: (216)433-6005

>NASA d enn Research Center

>21000 Brookpark Road

>Cl evel and, OH 44135

Subj ect: Re: [d obus-discuss] Interesting Problem
Date: Thu, 06 Sep 2001 12:29:20 -0400
From Gabriel Mateescu <gabriel.mteescu@rc. ca>

http://www.nas.nasa.gov/~johnny/modules.html (23 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

Organi zation: NRC
To: Allen Holtz <Allen. Holtz@rc. nasa. gov>
CC. di scuss@l obus. org

<initiating email in the thread sni pped>

It appears that gl obus-jobrmanager only sets up $HOMVE
and $LOGNAME, without creating a login shell for
the user, which is probably a design deci sion.

One can set the user environnent, though. For exanpl e,
one can issue

% gl obus-j ob-run <host _nane> /bin/csh -c "source .cshrc; printenv"

Gabri el

Subj ect: Re: [d obus-discuss] Interesting Problem
Date: Thu, 06 Sep 2001 14:18: 35 -0500
From Doru Marcusiu <marcusi u@csa. ui uc. edu>
To: Allen Holtz <Al en. Hol t z@r c. nasa. gov>
CC. <recipient_list_omtted>

Al l en,

The environnent for an LSF batch job is passed on fromthe environment from
which the job was submtted. In your case, once you |ogged on and your
.cshrc or .profile files were executed then your PATH variable was properly
set. Then when you submitted a job directly to LSF fromwi thin that sane
shell then the batch job will inherit the PATH variable as it was set for
you in your submtting shell

G obus doesn't execute your local startup files for your batch jobs. AT
NCSA we suggest to our users that they always submt shell scripts as there
batch jobs. Then, within the shell script one can execute any appropriate
startup files such as .cshrc or .profile to obtain the desirable
environnment for their batch job.

<initiating email in the thread sni pped>

Subj ect: Re: npich-g2 questions
Date: Sat, 10 Nov 2001 06:21:21 -0600

http://www.nas.nasa.gov/~johnny/modules.html (24 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

From "N cholas T. Karonis"
To: Johnny Chang
CC. karoni s@i u. edu, |lisotta, niggley, toonen@rcs. anl.gov

j ohnny,

when you split your 16-node rsl job into two 8-node subjobs then any
nmessage that goes froma proc in one subjob to a proc in the other subjob
is forced to use tcp conmuni cati on over sockets. this is true if the two
subj obs run on the same nmachine or if they're on different machines. as an
asi de, although not directly related to your questions, when npich-g2 is
configured with an npi flavor of globus (as i think the npich-g2 you are
using is) then nessages that go fromone proc to another within the sane
subj ob use the vendor-supplied npi, in your case sgi's npi, for nmessage
passi ng.

i'mnot famliar with the comunication pattern of the bt.B.16 benchmark,

but assumi ng that there is sone comuni cati on between the processes in your
di fferent subjobs, it _may_be the case that the sgi you're running on takes
a performance hit when there's a ot of intra-machine tcp comunication and
a perforns better when 1/2 of the tcp communication is noved to a different
machine. it _may_ be possible (again, not know ng how nuch nor the pattern
of the nmessagi ng) that when you run on a single machine that you're having
to share system socket resources to the point that you' re paying sone

over head.

we typically advise our users to place all the jobs that run on a
single machine into a single subjob for optimal performance.

to answer your (jobtype=npi) vs (jobtype=single) question, when

you place (jobtype=npi) into your rsl you are telling globus to

| aunch your app using the vendor's npirun conmand, which is essentially
what you're doi ng when you say (jobtype=single) and using your own
script to sgi-npirun your app. (jobtype=npi) doesn't do anything

to affect communication perfornmance ... it only serves as a trigger

to gl obus to use vendor-npirun to [aunch the app.

ni ck

Johnny Chang wites:

>H N ck,

>

>| have been running some NAS Paral |l el Benchmarks (LU, BT, and SP)
>conpiled with the npich-g2 library on the SG@ Oigin 2000 nachi nes

>at NASA Anes. One set of results has been rather surprising. For
>the bt.B. 16 experinments (Cass B, 16 processes) run as two subj obs

>Wi th (count=8) in each subjob, I find that the el apsed tinmes are about
>9% *| arger* when the two subjobs are run on the sane nmachi ne than
>when the two subjobs are run on separate machines (but in the sane room.
>This result does not make any sense. | have nmade multiple runs and

>t aken the average of the lowest 5 elapsed tines. Even the raw data

http://www.nas.nasa.gov/~johnny/modules.html (25 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

>shows a performance penalty when the two subjobs are on the sane
>machine. For |lu.B.16, there is only a negligible perfornmance penalty
>when run on only one nachine as opposed to split. For sp.B.16, the
>results are as expected -- split across two machi nes el apsed tines
>are |l onger than split across two subjobs on the same nachi ne.

>

>Can this result be explained by some communi cation pathway that is

>t aken when the two subjobs are on the sanme host?

>

>| have al so found that | can run npich-g2 distributed jobs with

>(j obtype=single) instead of (jobtype=npi) in nmy RSL, if:

>

>(i) | provide a script as the executable, and the script runs the
>native SA npirun on an a.out that has been conpiled with the npich-g2

>l ibrary,

>

>(ii) | provide the correct GLOBUS DUROC SUBJOB | NDEX environnents
>in my RSL.

>

>Conparing the el apsed runtines of the benchmarks using (jobtype=npi)
>With those of (jobtype=single) | find no performance penalty with
>the |l atter approach. However, | do not know if the (jobtype=npi)
>par anmeter sets up sone nore efficient comunication channel which
>woul d show up in cases | have not thought about. The |atter approach,
>using (j obtype=single) and running a user-provided script has certain
>di stinct advantages. Could you comrent on this as well?

>

>Thanks i n advance for any input.

>

>Si ncerely,

>

>Johnny

>o -

>Johnny Chang NASA Ames Research Center
>Scientific Consulting Mail Stop 258-6
>j ohnny@as. nasa. gov (650) 604-4356 Moffett Field, CA 94035-1000

/* ring.c code from MPICH & website (ww. hpcl ab. niu. edu/nmpi/) */
#i ncl ude <stdio. h>
#i ncl ude <npi . h>

/* command |ine configurables */
int Ntrips; [/* -t <ntrips> */
int Verbose; /* -v */

int parse_command _|ine_args(int argc, char **argv, int ny_id)

http://www.nas.nasa.gov/~johnny/modules.html (26 of 29) [2/4/2002 4:35:38 PM]

Using modules with MPICH-G2 (and "loose ends")

int i;
int error;

[* default values */

Ntrips = 1;
Ver bose = 0;
for (i =1, error = 0; lerror & i < argc; i ++)
{
if (!strcnp(argv[i], "-t"))
{
if (i +1 < argc & (Ntrips = atoi(argv[i+1])) > 0)
i+t
el se
error = 1;
}

else if (!strcnp(argv[i], "-v"))
Ver bose = 1;

el se
error = 1;

} /* endfor */

if (error && !'ny_id)
{
/* only Master prints usage nessage */
fprintf(stderr, "\n\tusage: % {-t <ntrips>} {-v}i\n\n", argv[0]);
fprintf(stderr, "where\n\n");
fprintf(stderr,
"\t-t <ntrips>\t- Nunber of trips around the ring.
"Default value 1.\n");
fprintf(stderr,
"\t-v\t\t- Verbose. Master and all slaves Iog each step. \n");
fprintf(stderr, "\t\t\t Default value is FALSE.\n\n");
} /* endif */

return error;
} /* end parse_command |line_args() */

mai n(int argc, char **argv)
{
i nt nunprocs, ny_id, passed_num
int trip;
MPI St at us st at us;
MPI _Init(&argc, &argv);
MPI _Comm si ze(MPI _COVWM WORLD, &nunprocs);
MPI _Comm r ank(MPI _COVW WORLD, &ny_id);

if (parse_command | ine_args(argc, argv, ny_id))

http://www.nas.nasa.gov/~johnny/modules.html (27 of 29) [2/4/2002 4:35:38 PM]

Using modules with MPICH-G2 (and "loose ends")

{
MPI _Finalize();

exit(l);
} /* endif */

i f (Verbose)
printf("ny_id % nunprocs %d\n", my_id, nunprocs);

i f (nunprocs > 1)

{
if (my_id == 0)
{
/* 1 amthe Master */
passed_num = 0;
for (trip =1; trip <= Ntrips; trip ++)
{
passed_num ++;
i f (Verbose)
printf("Master: starting trip % of %: "
"before sending numr%d to dest=%l\n",
trip, Ntrips, passed _num 1);
MPI _Send(&passed_num [* buff */
1, /* count */
VPl | NT, [* type */
1, [* dest */
0, /* tag */
MPI _COW WORLD); /* comm */
i f (Verbose)
printf("Master: inside trip %l of %l: "
"before receiving from source=%\n",
trip, Ntrips, nunprocs-1);
MPI _Recv(&passed_num [* buff */
1, /* count */
MPI | NT, /* type */
nunprocs-1, /* source */
0, /* tag */
MPI _COWM WORLD, /* conm */
&st at us) ; /* status */
printf("Master: end of trip % of %:
"after receiving passed_nun%d "
"(should be =trip*nunprocs=%l) from source=%\n"
trip, Ntrips, passed_num trip*nunprocs, nunprocs-1);
} /* endfor */
}
el se
{

http://www.nas.nasa.gov/~johnny/modules.html (28 of 29) [2/4/2002 4:35:38 PM]

Using modules with MPICH-G2 (and "loose ends")

/* | ama Sl ave */

for (trip =1; trip <= Ntrips; trip ++)
{
i f (Verbose)
printf("Slave %: top of trip % of %: "
"before receiving from source=%\n",

my_id, trip, Ntrips, nmy_id-1);

MPI _Recv(&passed_num /* buff */
1, /* count */
VPl _I NT, /[* type */
my_id-1, /* source */
0, /* tag */
MPI _COVWM WORLD, /* conm */
&stat us); [* status */

i f (Verbose)
printf("Slave %: inside trip % of %:
"after receiving passed_nun=% from source=%l\n",
my id, trip, Ntrips, passed num ny_id-1);

passed_num ++;

i f (Verbose)
printf("Slave %: inside trip % of %d:
"bef ore sendi ng passed_nunr% to dest=%\n",
my_id, trip, Ntrips, passed _num (ny_id+1) % unprocs);

MPI _Send(&passed_num [* buff */
1, /* count */
MPI | NT, /* type */
(nmy_i d+1) %wunprocs, /* dest */
0, /* tag */
MPI _COVWM WORLD) ; [* comm */

i f (Verbose)
printf("Slave %: bottomof trip % of %:
"after send to dest=%\n",
my_id, trip, Ntrips, (nmy_id+1)%unprocs);
} /* endfor */
} /* endif */
}
el se
printf("nunprocs = %, should be run with nunprocs > 1\n", nunprocs);

MPI _Finalize();

} /* end main() */

http://www.nas.nasa.gov/~johnny/modules.html (29 of 29) [2/4/2002 4:35:38 PM]

	nasa.gov
	Using modules with MPICH-G2 (and "loose ends")

